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This paper gives numerical examples showing that non-self-similar collapse can occur in the motion of four
point vortices on a sphere. It is found when the four-vortex problem is integrable, in which the moment of
vorticity vector is zero. The non-self-similar collapse has significant properties. It is partial in the sense that
three of the four point vortices collapse to one point in finite time and the other one moves to the antipodal
position to the collapse point. Moreover, it is robust with respect to perturbation of the initial configuration as
long as the system remains integrable.
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I. INTRODUCTION

Interaction between coherent vortex structures plays a sig-
nificant role in the understanding of inviscid and incompress-
ible flows in two-dimensional Euclidean space as well as on
the surface of a sphere, since vorticity is an invariant quan-
tity along the path of a fluid particle. As a simple mathemati-
cal treatment to understand the interaction, we assume that
the vorticity is concentrated in Dirac’s � functions, which are
called point vortices. The motion of N-point vortices is often
referred to as the N-vortex problem and it has been investi-
gated as a model for two-dimensional Euler flows for more
than a century. Owing to its mathematical simplicity, many
research papers are now available. For a complete list of
references on this subject, see the book by Newton �1�.

We focus here on the case in which the number of point
vortices is small. Since the motion of the point vortices is
formulated as a Hamiltonian dynamical system with N de-
grees of freedom �1�, research results are stated in the frame-
work of the Hamiltonian dynamical systems theory. Regard-
ing the integrability, the three-vortex problems in the plane
and on the sphere are both integrable for any strengths of
point vortices �2–4�. Although the four-vortex problem is not
integrable in general �e.g., �5��, it becomes integrable with a
certain additional constraint condition. Such integrable four-
vortex problems have been studied for the planar case �7,8�
and for the spherical case �6�. For N�5, the N-vortex prob-
lem is no longer integrable in the plane as well as on the
sphere.

On the other hand, it is known that under some circum-
stances, during their motion, point vortices can collapse to a
single point. The existence of such a singular solution is
physically important since the point-vortex model fails to
approximate the Euler flow after the critical time. In addi-
tion, the singular solution is of mathematical significance,
since its properties provide us with useful information that
would contribute to theoretical research of the Euler flows.
So far, only self-similar collapse, in which all point vortices
shrink to a point self-similarly in finite time without chang-

ing ratios between their relative distances, has been investi-
gated. In the planar N-vortex problem, Kimura gave a nec-
essary condition on the strengths of the point vortices for the
self-similar collapse, and he also derived algebraic equations
for the ratios �9�. By solving the algebraic equations, he con-
structed a self-similar collapse solution of the three point
vortices in the plane. Another approach has been introduced
to derive the self-similar collapse of the three-point vortices
for the planar case �1� and for the spherical case �10�. How-
ever, it is still unknown whether non-self-similar collapse
can occur or not. As for the planar three-vortex problem, it
has been mathematically proven that non-self-similar col-
lapse never occurs �11�. Hence, we need to consider at least
the four-vortex problem in order to obtain non-self-similar
collapse. Furthermore, we do not yet know whether some of
the point vortices collapse to a point while the others remain
away from the collapse point at the singular time.

In the present paper, we give numerical evidence that non-
self-similar and partial collapse is possible in the integrable
four-vortex problem on the sphere. In the next section, we
review the results of the paper �6� on the motion of the inte-
grable four point vortices on the sphere. Then, in Sec. III, we
show an example of non-self-similar collapse on the sphere
and describe its properties in detail. In Sec. IV, we give more
examples to see what conditions are required for the exis-
tence of non-self-similar collapse. The last section contains a
summary and discussion.

II. INTEGRABLE MOTION OF FOUR POINT
VORTICES ON SPHERE

We summarize some results on the integrable four-vortex
motion on the sphere given in �6�, which helps us describe
the collapse solution in the following sections. Regarding the
detailed derivations of these results, we would like the read-
ers to refer to the original paper.

Let ��m ,�m� and �m denote the spherical coordinates of
the mth point vortex on the unit sphere and its strength for
m=1, . . . ,4, respectively. With the Poisson bracket between
two functions f and g,

�f ,g� = �
m=1

4
1

�m
� �f

��m

�g

� cos �m
−

�g

��m

�f

� cos �m
	 , �1�

the motion of the point vortices is governed by
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d cos �m

dt
= �cos �m,H�,

d�m

dt
= ��m,H� , �2�

where the Hamiltonian is given by

H = −
1

4�
�
j=1

4

�
m�j

4

�m� j log lmj
2 �3�

and

lmj
2 = 2�1 − cos �m cos � j − sin �m sin � j cos��m − � j��

is the Euclidean distance between the mth and jth point vor-
tices. Let us introduce the moment of vorticity vector M
= �Q , P ,S� by

Q = �
m=1

4

�m sin �m cos �m,

P = �
m=1

4

�m sin �m sin �m,

S = �
m=1

4

�m cos �m.

It follows from �H ,Q�= �H , P�= �H ,S�=0 that each compo-
nent of M is invariant in time. Moreover, we have �Q , P�
=S, �P ,S�=Q, and �S ,Q�= P, and thus they are in involution
with each other when Q= P=S=0 holds at the initial mo-
ment. This indicates that the four-vortex problem on the
sphere is integrable if the moment of vorticity vector is zero
�1�.

In what follows, the motion of the four point vortices is
described in terms of their relative distances lmj

2 . The inte-
grable system admits two invariant quantities, the Hamil-
tonian H and C,

C = �2 = �
j=1

4

�
m�j

4

�m� jlmj
2 , �4�

where � denotes the total circulation, defined by �=�1+�2
+�3+�4. Due to the zero moment condition, the four-vortex
problem can be reduced to a three-vortex problem with a
method used by Rott in the planar four-vortex problem �12�.
Namely, it follows from Q= P=S=0 that we have the rela-
tions between the distances lmj

2 for m , j=1, . . . ,4 as follows:

�1�4l14
2 = �2�3l23

2 + ���1 − �2 − �3 + �4� , �5�

�2�4l24
2 = �3�1l31

2 + ��− �1 + �2 − �3 + �4� , �6�

�3�4l34
2 = �1�2l12

2 + ��− �1 − �2 + �3 + �4� . �7�

Owing to these relations, the relative position of the fourth
point vortex is determined by the configuration of the vortex
triple 123.

In that paper �6�, necessary conditions for self-similar col-
lapse were also shown. It has been proven that there exist no
self-similar four-vortex collapse and no self-similar binary

collapse, in which pairs of two point vortices collapse at two
different points simultaneously. However, the self-similar
triple collapse, in which three of the four points collapse and
the other one remains away from the collapse point, was not
ruled out. For instance, the self-similar collapse of the vortex
triple 234, which we deal with in this paper, is permitted
when the vortex strengths satisfy the following conditions:

�1 − �2 − �3 − �4 = 0, �8�

�2�3 + �2�4 + �3�4 = 0. �9�

The first condition comes from Eqs. �5�–�7� and the invari-
ance of C with the assumptions that l23

2 = l34
2 = l24

2 =0 and
l12
2 , l13

2 , l14
2 �0 at a certain time. The second one is derived

from the invariance of H with the additional self-similarity
assumption, l34

2 =	1l23
2 and l24

2 =	2l23
2 for some constants

	1 ,	2�R. These necessary conditions provide us with addi-
tional information on the triple collapse. Substituting Eq. �8�
into Eqs. �5�–�7� leads us to

l14
2 =

�2�3

�1�4
l23
2 + 4, l31

2 =
�2�4

�3�1
l24
2 + 4, l12

2 =
�3�4

�1�2
l34
2 + 4,

�10�

which indicates that if the vortex triple 234 collapses, i.e.,
l23
2 = l24

2 = l34
2 =0, then the first vortex is located at the antipodal

position to the collapse point.
The strengths of the point vortices are further restricted

due to the boundedness of the relative distances between
point vortices on the sphere, i.e., 0
 lmj

2 
4. The existence
region of �3 and �4 for given �1 and �2 is called the possible
region. For instance, the triple 234 collapse is possible when
�1��2��3�0��4, for which the possible region is given
as follows �6�:

�1 � �2 + �3 − �4, − �4 � �1 + �2 + �3, �1 � 2�2.

�11�

Figure 1 shows the possible region �11�, which is divided
into four subregions, say I to IV, by the lines �4=−�3+�1
−�2, �4=�3−�1−�2, and �4=−�3−�1+�2. Let us note that

-Γ
1-Γ

2
Γ
2-Γ

1

Γ1+Γ2Γ2Γ1-Γ2

Γ
4

Γ3

I

II

III

IV

Γ4=-Γ3+Γ1-Γ2

Γ4=-Γ3-Γ1+Γ2

Γ4=Γ3-Γ1-Γ2

0

FIG. 1. Possible region �11� of ��3 ,�4� for given �1 and �2.
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the first line is equivalent to the necessary condition �8� for
which the triple 234 collapse is permitted.

The dynamics of the integrable system is represented in
the trilinear coordinates, which is a standard and convenient
tool for the description of integrable systems �2–4,6,7�. Now
we suppose that ���−2�4��0. Then the trilinear coordi-
nates �b1 ,b2 ,b3� are defined by

b1 =
3�2�3l23

2

��� − 2�4�
, b2 =

3�3�1l31
2

��� − 2�4�
, b3 =

3�1�2l12
2

��� − 2�4�
.

�12�

Since b1+b2+b3=3 due to Eqs. �5�–�7�, the configuration of
the vortex triple 123 corresponds to the point in the trilinear
phase space, in which each component of the trilinear coor-
dinates represents the distance from one of the sides of the
equilateral triangle with height 3 as shown in Fig. 2. In ad-
dition, we use other trilinear coordinates �B1 ,B2 ,B3�, in
which

B1 =
3�1�4l14

2

��� − 2�4�
= b1 +

3�� − 2�2 − 2�3�
� − 2�4

, �13�

B2 =
3�2�4l24

2

��� − 2�4�
= b2 +

3�� − 2�3 − 2�1�
� − 2�4

, �14�

B3 =
3�3�4l34

2

��� − 2�4�
= b3 +

3�� − 2�1 − 2�2�
� − 2�4

. �15�

The equalities on the right-hand sides are derived from Eqs.
�5�–�7� and �12�. Since we have B1+B2+B3=6�4 / ��−2�4�,
each component of �B1 ,B2 ,B3� also represents the distance
from one of the sides of another equilateral triangle with
height 6�4 / ��−2�4�, which is called the physical triangle.
Let us remark that the collapse of the vortex triple 234 cor-
responds to the point at the side of the trilinear triangle b1
=0 and the vertex of the physical triangle B2=B3=0.

We need to take into consideration another constraint on
the motion of the four point vortices. Since the vortex triple
123 must form a triangle on the sphere, their configuration is
restricted by the triangle inequality �6�,

3Vp − ��� − 2�4�b1b2b3 � 0, �16�

in which

Vp = 2�2�3b2b3 + 2�3�1b3b1 + 2�1�2b1b2

− ��1b1�2 − ��2b2�2 − ��3b3�2.

The region where the condition �16� is satisfied is referred to
as the physical region. The configuration where the three
point vortices lie on a great circle corresponds to a point at
the boundary of the physical region. The solution of the in-
tegrable four-vortex problem evolves along a contour curve
of Hamiltonian,

H = �2�3 log
b1
 + �3�1 log
b2
 + �1�2 log
b3


+ �1�4 log
B1
 + �2�4 log
B2
 + �3�4 log
B3
 . �17�

Hence, we have only to plot contour lines of the Hamiltonian
inside the physical region in the trilinear phase space to see
the evolution of the four point vortices. The topological
structure of contour lines of the Hamiltonian for the vortex
strengths in the subregions I to IV has already been studied in
�6�. On the other hand, less attention was paid to the motion
of the four point vortices when the vortex strengths are cho-
sen from the boundary lines between the subregions, where
the triple 234 collapse is possible. We consider this case in
the next section.

III. NON-SELF-SIMILAR PARTIAL COLLAPSE

We deal with a special case of �1=3, �2=2, �3=2, and
�4=−1 that satisfies the conditions �8�, �9�, and �11�, for
which the collapse of the triple 234 is possible. In Fig. 3�a�,
the larger triangle represents the trilinear triangle and the
smaller one is the physical triangle. Inside the physical tri-
angle, the boundary of the physical region is drawn as a solid
closed curve. Figure 3�b� is a close-up of the physical tri-
angle, in which contour lines of the Hamiltonian are plotted.
The two filled circles at the boundary of the physical region
represent singular configurations corresponding to the triple

b1

b2
b3

(b1,b2,b3)

FIG. 2. Trilinear representation of the configuration of the vor-
tex triple 123.

(a) (b)

2-3-4

1-4

2-3-4

1-4

FIG. 3. �a� The trilinear triangle �the larger one�, the physical
triangle �the smaller one with dashed line�, and the physical region
�the solid closed curve inside the physical triangle� for �1=3, �2

=2, �3=2, and �=−1. The point “2-3-4” denotes the singular con-
figuration where the vortex triple 234 is at the same position, and
the point “1-4” corresponds to the singular configuration where the
first and the fourth point vortices are at the same position. �b� Con-
tour lines of the Hamiltonian inside the physical region, which is a
close-up of the left figure. The vertical dashed line in the center
corresponds to the initial configuration of the four point vortices
�18�.
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234 collapse, b1=B2=B3=0, and the binary collapse of the
vortices 1 and 4, B1=0, respectively. The contour lines ap-
pear to converge at the point of the triple 234 collapse, which
suggests that the triple collapse occurs. We will discuss how
the contour lines of the Hamiltonian behave in the neighbor-
hood of the triple 234 collapse in the next section.

The above observation is verified by numerical means.
Let �0�0 be a parameter. Then we give an initial configu-
ration of the four point vortices as follows:

�1 = � − �0, �2 = �3 = �4 = �0,

�1 = �4 = 0, �2 = − �3 = 2/3� , �18�

in which the vortex triple 234 forms an equilateral triangle at
the line of latitude �0 and the first point vortex is located at
the position symmetric to the fourth point vortex with respect
to the equator, as we see in Fig. 4. The trilinear coordinates
for this configuration are given by

b1 =
3

4
sin2 �0, b2 = b3 =

3

8
�4 − sin2 �0� ,

B1 =
3

4
�sin2 �0 − 1�, B2 = B3 = −

3

8
sin2 �0, �19�

which means that the initial configuration �18� corresponds
to the center line b2=b3 and B2=B3 in the trilinear and the
physical phase spaces, which is drawn as a vertical dashed
line in Fig. 3�b�. It follows from the triangle inequality �16�
and the trilinear coordinates �19� that the parameter �0 var-
ies in the range of �0,� /2�. For �0=0, the initial configura-
tion corresponds to the collapse of vortex triple 234, while
the first point vortex coincides with the fourth one at the
equator for �0=� /2.

Regarding the temporal integration of Eq. �2�, we use
the fourth-order Runge-Kutta method with time step size
t=10−5 and we stop the numerical computation when the
relative distances between the vortex triple 234 become less
than a threshold value 10−5. We verify the accuracy of the
numerical computation by checking the values of the Hamil-
tonian and the moment of vorticity vector at each time step.
In the examples of this paper, these values remain the same
as those for the initial configuration up to six-digits at most.
For example, we plot the values of the Hamiltonian and the
moment of vorticity vector for the initial configuration �18�
with �0=0.2� in Fig. 5. Although the vortex triple 234 col-
lapses for this case as shown later, we hardly see any varia-
tion in these values.

We show the trajectory of the four point vortices for the
initial data �18� with �0=0.2� in Fig. 6, which indicates that
the vortex triple 234 collapses to one point at some finite
time, say tc, and the first point vortex stays away from the
collapsing point. In order to see the trajectory quantitatively,
we plot the relative distances lmj

2 in Fig. 7. It shows that the
distances between the vortex triple 234 tend to zero, while
those between the first point vortex and the triple approach 4,
i.e., l23

2 , l24
2 , l34

2 →0 and l12
2 , l13

2 , l14
2 →4. Hence, the first vortex

is located at the antipodal position to the collapsing point.
Then, we pay attention to the ratios l24

2 / l23
2 and l34

2 / l23
2 be-

tween the vortex triple 234. If they are constant throughout
the evolution, the collapse is self-similar. However, as we see
in Fig. 8, the ratios change and tend to different constants
asymptotically as time approaches the collapse time. This
means the collapse of the vortex triple is non-self-similar.

Now we change the parameter �0. Figure 9 shows the
distances between the four point vortices and the ratios of the

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 2 4 6 8 10 12

H
,Q

,P
,S

Time

Hamiltonian
Q
P
S

FIG. 5. Plot of the values of the Hamiltonian H and the moment
of vorticity vector �Q , P ,S� for the initial configuration �18� with
�0=0.2�. blackWhile the value of H=−0.511 360 355 5 is un-
changed up to 10 digits, those of Q, P, and S stay zero within
O�10−10� until the collapse time.

θ０

1

2

3
4

θ０

FIG. 4. Initial configuration for the four point voritces �18�.

FIG. 6. Collapse of the vortex triple 234 for the initial configu-
ration �18� with �0=0.2�. The first point vortex moves toward the
antipodal position to the collapse point when the triple collapse
occurs.
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vortex triple 234 for the initial configuration �18� with �0
=0.3�. This indicates that non-self-similar triple collapse oc-
curs for this case. We observe the same type of non-self-
similar triple 234 collapse for �0� �0.04� ,0.3553��. Let us
note that it is difficult to compute the triple collapse accu-
rately for �0
0.04� by numerical means, since the initial
configuration is close to the singular configuration. Then we
plot the collapse time tc for various �0 in Fig. 10. The col-
lapse time increases rapidly as �0 tends to 0.3553�. This
implies that there exists a threshold value �c, where the col-
lapse time blows up. As a matter of fact, if we take the
parameter �0 a little larger, e.g., �0=0.3554�, the vortex
triple never collides and the orbit becomes periodic as in Fig.
11. For 0.3554�
�0�� /2, we confirm that the evolution
of the four point vortices is always periodic.

From the viewpoint of the trilinear representation in Fig.
3�b�, all contour lines passing across the vertical center line
b2=b3 for 0��0��c represent the orbits that lead to the
triple 234 collapse in finite time. Since we can take any point
in these contour lines as an initial configuration of the four
point vortices, the triple collapse is robust under any pertur-
bation of the initial configuration as long as the moment of
vorticity vector remains zero.

IV. COLLAPSE AND INTEGRABILITY

In the preceding section, we have found the collapse so-
lution in the integrable four-vortex problem for a special
choice of the vortex strengths that satisfies the necessary
conditions �8� and �9� for the self-similar triple 234 collapse,

which gives rise to some questions. The first one is whether
we can observe non-self-similar collapse for other values of
the vortex strengths. The second one is whether it is really
necessary to assume the condition �9� for the vortex
strengths. It is a necessary condition for the existence of
self-similar collapse, but the triple 234 collapse we found is
non-self-similar. The final one is how the integrability of the
system plays an important role in the triple collapse. These
are examined in this section with more examples.

First, we see the other integrable cases when the vortex
strengths satisfy the necessary conditions �8� and �9� as in the
preceding section. Here, we set the initial configuration as

�2 = �3 = �4 = �0, �2 = 0, �3 = 2�/3. �20�

The initial data for �1, �1, and �4 are determined by solving
Q= P=S=0 numerically. The parameter �0 is variable in the
range of �0,0.5��. For Eq. �20� with �0=0, the vortex triple
234 is at the north pole and the first vortex is at the south
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FIG. 8. Plots of l24
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2 , which are ratios of distances
between the vortex triple 234, for the orbit in Fig. 6.
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FIG. 9. Evolution of �a� the relative distances lmj
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four-point vortices, and �b� the ratios of the relative distances of the
vortex triple 234 for the initial configuration �18� with �0=0.3�.
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FIG. 10. Time of the triple 234 collapse, tc, versus �0.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

di
st

an
ce

s
l m

j2

time

l12
2

l13
2

l14
2

l23
2

l24
2

l34
2

FIG. 7. Evolution of the relative distances lmj
2 between the four

point vortices for the collapsing orbit in Fig. 6.

NON-SELF-SIMILAR, PARTIAL, AND ROBUST… PHYSICAL REVIEW E 78, 016312 �2008�

016312-5



pole due to S=0 and Eq. �8�. It corresponds to the singular
triple 234 collapse. On the other hand, for �0=0.5�, all the
point vortices are in the equator and the first and the fourth
point vortices are located at the same position, which corre-
sponds to the singular binary 14 collapse. Figure 12 shows
the evolution of the relative distances between the four-point
vortices and the ratios between the vortex triple 234 for �1

=4, �2=3, �3= 1
2 �1+�13�, and �4= 1

2 �1−�13�, which indi-
cates that the non-self-similar triple collapse also occurs. We
plot contour lines of the Hamiltonian in the physical triangle
in Fig. 13�a�, and the collapse time tc of the triple 234 for the
initial configuration �20� with �0� �0.05� ,0.364�� in Fig.
13�b�. The collapse time tc blows up as �0 approaches
0.346�. The same phenomenon is also observed for the other
case when �1=6, �2=5, �3= 1

2 �1+�21�, and �4= 1
2 �1−�21�,

for which contour lines of the Hamiltonian in the physical
triangle and the collapse time tc for the initial configuration

�20� with �0� �0.05� ,0.3776�� are shown in Figs. 14�a�
and 14�b�, respectively.

Next, we consider the case in which �1=3, �2=2, �3
=1.5, and �4=−0.5 that satisfies Eq. �8� but not Eq. �9�.
Figure 15 shows the contour plot of the Hamiltonian in the
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configuration �18� with �0=0.3554�, which shows that the motion
of the four vortices is periodic.
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physical triangle, which shows that the contour lines never
connect to the point corresponding to the triple 234 collapse.
To confirm this observation, we consider the following initial
configuration:

�2 = �3 = �4 = �0, �2 = �/4, �3 = 3/4� . �21�

The other variables, �1, �1 and �4, are numerically deter-
mined by solving the equations Q= P=S=0. Note again that
the initial configurations �21� with �0=0 and 0.5� corre-
spond to the triple 234 collapse and the binary 14 collapse,
respectively. As we change the parameter �0, the point cor-
responding to the initial configuration �21� in the trilinear
phase space moves along a continuous curve that connects
the two singular points and is transverse to contour lines of
the Hamiltonian in Fig. 15. We numerically confirm that all
orbits starting from the configuration �21� become periodic.
Figure 16 shows the period for these periodic orbits for �0
� �0.05� ,0.46��. Hence, the necessary condition �9� for the
self-similar triple 234 collapse is required for the existence
of non-self-similar collapse.

We discuss here why the condition �9� is required for the
existence of triple collapse. As we have observed in the three
examples that satisfy Eq. �9�, the contour lines of the Hamil-
tonian shown in Figs. 3, 13�a�, and 14�a� appear to converge
to the point corresponding to the triple 234 collapse. So we
see how the contour lines behave in the neighborhood of the
collapse point. It follows from Eqs. �8�, �9�, �14�, and �15�
that

B2 = b2 −
3�3

�2 + �3
, B3 = b3 −

3�2

�2 + �3
.

Hence, the triple 234 collapse, i.e., b1=B2=B3=0, is repre-
sented by

�b1,b2,b3� = �0,
3�3

�2 + �3
,

3�2

�2 + �3
	 �22�

in the trilinear coordinates. Thus the trilinear coordinates of
points near Eq. �22� are given by

b1 = s , �23�

b2 =
3�3

�2 + �3
−

1

2
s −

�3

2
� , �24�

b3 =
3�2

�2 + �3
−

1

2
s +

�3

2
� , �25�

in which s and � are two independent parameters. Then the
triple �B1 ,B2 ,B3� is represented by

B1 = s +
3�4

�2 + �3
, �26�

B2 = −
1

2
s −

�3

2
� , �27�

B3 = −
1

2
s +

�3

2
� . �28�

Due to Eq. �9�, the Hamiltonian Eq. �17� becomes

H = �2�4 log�B2

b1
� + �3�4 log�B3

b1
� + �1�3 log
b2


+ �1�2 log
b3
 + �1�4 log
B1
 ,

in which the first two terms become singular and the last
three terms are finite as s ,�→0. However, as a matter of
fact, owing to Eqs. �23�, �27�, and �28�, the singular part
behaves like

�2�4 log� 1

2
+

�3

2

�

s
� + �3�4 log� 1

2
−

�3

2

�

s
� ,

which is finite when we take the limit s ,�→0 with the ratio
� /s being constant. Moreover, the limit value of the singular
part depends on the ratio � /s, which allows the contour lines
of the Hamiltonian to converge at the triple 234 collapse.
Consequently, the condition �9� is necessary for the existence
of the triple 234 collapse.

Finally, we perturb the initial configuration �18� so that it
loses its integrability. The initial positions of the second, the
third, and the fourth point vortices are the same as in Eq.
�18�, but the first point vortex is slightly perturbed as �1
=�−�0+�, in which �=10−4 and �0=0.2�. Then the four-
vortex problem is no longer integrable since Q�0 and S
�0 at the initial moment. Figure 17 shows the trajectory of
the four point vortices. After the vortex triple 234 approaches
closely, the three point vortices swing by and separate away.
The evolution of the relative distances lmj

2 between the four-
point vortices is plotted in Fig. 18�a�. It seems that no col-
lapse of the four point vortices occurs. We confirm this by
plotting the evolution of the vortex triple 234 around t

b1=0
2-3-4

1-4

FIG. 15. Contour lines of the Hamiltonian for �1=3, �2=2,
�3=1.5, and �4=−0.5 that satisfies Eq. �8� but not Eq. �9�.
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FIG. 16. Period of the periodic orbits for the initial configuration
�21� versus �0 for �1=3, �2=2, �3=1.5, and �4=−0.5.
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10.5 with a log plot on the vertical axis in Fig. 18�b�,
which shows that the relative distances are greater than 10−5.
This example indicates that the integrability of the system is
also necessary for the existence of non-self-similar collapse.

V. SUMMARY AND DISCUSSION

We have reported some numerical examples showing that
non-self-similar triple collapse is possible in the integrable
four-vortex problem on the sphere. Three point vortices col-
lide at one point in finite time and the other one is located at
the antipodal position to the collision point. The non-self-
similar triple collapse has never been reported so far and it is
a unique phenomenon found in the four-vortex problem on
the sphere. It would be interesting to see if the partial col-
lapse occurs in the planar four-vortex problem or not.

The singular solution is robust under the perturbation of
initial data as long as the Hamiltonian system remains inte-
grable. This is different from the self-similar collapse in the
three-vortex problem found in the preceding research, since
the choice of the initial configuration for the collapse is
strongly restricted, i.e., it is nongeneric. We also see that the
integrability of the system is a necessary condition for the
existence of non-self-similar triple collapse.

Let us finally note that the present paper does not give a
rigorous mathematical proof for the existence of non-self-
similar collapse. Although we have checked the numerical
results as carefully as possible, we are unable to avoid a
certain approximation error and the round-off error in nu-

merical computations. Nevertheless, the examples still give
us some useful information for the mathematical proof. For
instance, the conditions on the vortex strengths �8� and �9�
and the integrability of the Hamiltonian system are necessary
for the existence of non-self-similar, partial, and robust col-
lapse. We have tried to describe the singular solution explic-
itly, but we have been unsuccessful as of yet. A topological
regularization method proposed by Hiraoka �11� for the pla-
nar three-vortex problem could be applied to prove the exis-
tence of non-self-similar collapse, but its application to the
four-vortex problem on the sphere is not straightforward. We
need more research on the topic, and it will be reported on in
the near future.
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FIG. 17. Trajectory of the four-point vortices when the initial
configuration �18� is perturbed as �1=�0+� with �=10−4 and �0

=0.2�. The strengths of the point vortices are �1=3, �2=2, �3=2,
and �4=−1. The four-vortex problem on the sphere is not integrable
for this initial configuration.
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four point vortices corresponding to the trajectory in Fig. 17. �b�
Log-plot of the evolution of the vortex triple 234 around t10.5.
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